Publicado originalmente en Medium.

El presidente Andrés Manuel López Obrador presentó su informe con motivo al primer año de gobierno. En el marco de su mensaje, aseguró haber cumplido 89 de 100 compromisos establecidos como metas de su primer año de gestión. Sin embargo, su informe se presenta ensombrecido por el aumento de la violencia del crimen organizado que ha dejado 33 mil personas asesinadas en lo que va de su administración, la paralización del crecimiento económico y duras batallas políticas como la designación de la titular de la Comisión Nacional de Derechos Humanos, las idas y venidas con el gobierno estadounidense de Donald Trump, la movilización de activistas como la familia LeBarón y Javier Sicilia, y la controversia por el asilo político otorgado al presidente de Bolivia, Evo Morales.

Prácticamente, todas las coyunturas del “primer gobierno de izquierda mexicano” han sido acompañadas por explosiones de activación digital en servicios de redes sociales, en especial, Twitter. Diversos analistas han señalado la presencia de redes tanto a favor como en contra del presidente López Obrador que han participado en un intenso debate con signos de polarización.

Las redes sociodigitales han sido el escenario en el que múltiples voces se han hecho escuchar, las usuarias y usuarios han construido “paisajes” y foros de los que se ha apropiado para las más diversas movilizaciones de reclamos y discursos. Tan sólo en el último año, eventos tales como el #MeToo mexicano, las coyunturas producidas por hechos violentos como el ataque en Minatitlán (Signa Lab) o las propias elecciones de 2018 con el esfuerzo de #VerificadoMX han dejado constancia de los espacios de imaginación, posibilidad y disputa que se generan en “las redes”.

Sin embargo, también se han hecho visibles nuevas lógicas que parecen buscar la desapropiación de estos nuevos espacios.

De ahí que cada vez sea más necesario ver con precaución lo que ocurre en la “esfera digital” para no tomar las producciones culturales de estos espacios como si fueran un simple reflejo del estado de ánimo de la ciudadanía. Hay solapamientos entre ambos espacios, el digital y “analógico”, pero la construcción de las distinciones requiere cierto distanciamiento.

El laboratorio de investigación de ITESO Guadalajada, Signa Lab, señaló en un breve informe algo que puede parecer obvio pero en lo que cabe la pena detenerse: “internet no es una sustitución del espacio público ni de las prácticas políticas, sino un escenario de rearticulación de los repertorios comunicativos y políticos” y las nuevas dinámicas producidos desde y hacia el poder “constituye una muestra de cómo la lucha por los regímenes de verdad y la «producción» de lo político en los entornos digitales ha entrado en una fase marcada por los procesos de automatización”.

La discusión sobre la presencia de automatismos y bots en la discusión política digital es importante pero, creemos, no lo es todo. Lo que la discusión digital parece presentarnos son aparentes “cajas de resonancia” que podrían interpretarse como polarización. Sin embargo, ¿a qué grado existe polarización sin diálogo? ¿Qué vasos comunican las líneas del debate digital? O, si no llegamos a precisar estas cuestiones, valdría quizá la pena saber ¿de qué están hablando esas esferas distantes pero necesariamente conectadas que se juegan el todo por el todo en un “con nosotr*s o con ell*s”?

AMLO: Primer año, informe y marchas

Para tratar de ensayar una respuesta a esta última pregunta hemos realizado una extracción de mensajes de la red social Twitter durante el día 1 de diciembre de 2019. La extracción se realizó de las 12:00 a las 18:00 horas obteniéndose un total de 115,632 tweets. El criterio de selección fueron dos etiquetas o hashtags “antagónicos” en la conversación digital: #amlofest y #marcha1dediciembre. Las etiquetas fueron elegidas por ser las que ocuparon los primeros lugares en los Trending Topics de México durante la hora posterior al inicio del informe por el primer año de gobierno de Andrés Manuel López Obrador y la marcha realizada por opositores que partió del Ángel de la Independencia al Monumento a la Revolución, ambos eventos, en la Ciudad de México. (Los tweets fueron recuperados mediante R Studio utilizando la librería “rtweet”, las visualizaciones fueron realizadas con la paquetería Gephi. Todos los grafos recibieron el mismo tratamiento: el algoritmo de distribución fue Force Atlas 2, las etiquetas tienen tamaños proporcionales para medidas de grado con pesos).

El Grafo 1 visualiza las relaciones entre usuarios (red usuario-a-usuario — menciones, retuits, favoritos — ) para los mensajes que conforman la muestra. Los nodos se encuentran escalados por grado de entrada por lo que las etiquetas de nodo más grandes muestran a los usuarios a los que se dirigieron mayor número de mensajes en la muestra. La red cuenta con 33,729 nodos y 115,590 aristas (Av. Degree: 3.42, Av. Path Lengh: 7.26). El cálculo de modularidad dio como resultado 1,432 comunidades (Res: 1, Modularity: 0.46).

Grafo 1. Red de usuario a usuario para las etiquetas #amlofest y #marcha1dediciembre. Nodos: 32,729. Aristas: 115,590. Los nodos están representados por mayor grado de entrada con pesos.

Básicamente, se forman dos grandes comunidades. La azul, en la que la cuenta @lopezobrador_ cuenta con el mayor grado de entrada, representaría una comunidad “pro-AMLO” mientras que la comunidad naranja representaría la red “Anti AMLO” en la que, además de la cuenta del medio El Universal, otras dos cuentas presentan alto grado de entrada. Se trata de las cuentas @FerBetancourt09 y @GlodeJo07. Estas cuentas aglomeran un gran número de retweets y favoritos. A continuación se muestran dos de los mensajes con mayor número de interacciones en la red.

La sola presencia de usuarios con alto nivel de entrada en una red, sea esta a favor o en contra de un personaje, no otorga por si misma evidencia de automatismos o coordinación. Para ello, sería necesario analizar más a detalle a los usuarios que interactúan en sendas redes. No es ese el objetivo de este pequeño ensayo. Sino el contenido de los discursos circulantes “entre” las comunidades.

Para ello, el siguiente paso fue realizar un grafo de los hashtags usados por los usuarios (usuario-a-hashtag). El resultado fue una red con 20.924 nodos y 54,427 aristas (Av. Degree: 2.6; Av. Path Lenght: 1) cuyo cálculo de modularidad dio como resultado 3,998 comunidades.

Una forma de interpretar lo anterior podría ser la siguiente: si bien hemos extraído mensajes a partir de dos etiquetas o palabras clave, los usuarios utilizan una gran variedad de hashtags en su producción; no obstante ello, es posible que ciertas etiquetas tiendan a “agruparse” y son esos pequeños clusters de palabras clave las que nos dan una pista sobre la cualidad del discurso que cada red estaría movilizando.

El Grafo 2 muestra estas relaciones. Las etiquetas tienen tamaños proporcionales para grado con pesos. Aunque ahora parece haber más comunidades en juego, hay dos principales que atraen nuestra atención.

Grafo 2. Red de usuarios a hashtags. Los etiquetas de nodo con mayor tamaño expresan su grado con pesos dentro de la red.

En la comunidad azul (ahora “Anti AMLO”) la etiqueta principal es la que guió parte de nuestra búsqueda, #marcha1dediciembre, pero a esta se asocian con cierta importancia hashtags tales como #marchaporelcambio, #lopezelfracasopresidencial y #amlorenunciaya, entre otras.

En la comunidad roja (“Pro AMLO”) el peso de las etiquetas está más distribuido no solo entre la principal, #AMLOfest, sino que le sigue #AMLOnoestassolo, #AMLOestamoscontigo y #marchafifi. En cuanto a la segunda y tercera, tienen cierta similitud con las que se han presentado en otras coyunturas impulsadas por la denominada RedAMLOve (Signa Lab).

Para algunos autores, el uso de hashtags forma parte de la estrategia de estas redes digitales para visibilizar sus mensajes, aglomerar a los adherentes y establecer las pautas del discurso que producen (Blevins et al, 2019) y es de esperarse que entre las etiquetas se dé cierto grado de homofilia (Xu y Zhou, 2020) o en nuestros términos, que la afinidad entre los miembros de una red dé como resultado un uso más “coordinado” de las etiquetas.

Es en las relaciones entre las etiquetas donde creemos que se dan algunas pistas de cómo se da el diálogo, si alguno, entre las redes de activación digital, en este caso, a favor y en contra de un tema o personaje político.

Redes antagónicas, esferas desconectadas: el debate sin diálogo en torno a AMLO

El último paso que seguimos fue graficar las relaciones entre etiquetas. El grafo por sí mismo no nos da mucha más información, pero es necesario visualizarlo para ver cómo se distribuye el discurso digital cuando solo de hashtags se trata.

El Grafo 3 contiene 1,373 hashtags representados por nodos entre los cuales existen 2,943 relaciones o aristas (Av. Degree: 4.3). El cálculo de modularidad (0.45) dio como resultado 56 comunidades.

Grafo 3. Relaciones entre hashtags que conforman la muestra. Nodos: 1,373. Aristas: 2,943.

A partir de este grafo se realizó un sub-selección de etiquetas. Para ello, se utilizó el filtro de conectividad K-Core (k=5) (El filtro de conectividad K-Core es una de las opciones de filtrado que ofrece el software Gephi y permite obtener los nodos más conectados a la red. A mayor profundidad del filtro, menos nodos quedan en el grafo, pero manteniéndose siempre los que cuentan con mayor número de relaciones. Así, el filtrado nos permite “ver” a aquellos nodos que “sostienen” la red). El resultado dejó un total de 146 nodos (que representan el 10.6% del total) y 1,026 relaciones entre los mismos (34.86%).

Lo que este tipo de filtro deja ver, intuitivamente, es que solo 10% de los hashtags están presentes en más de una tercera parte de las relaciones. Es decir, obtenemos las etiquetas más utilizadas por los usuarios pero, a la vez, las más relacionadas entre sí.

Una vez obtenida esta lista de etiquetas, hemos decidido categorizarla. Para ello, partimos de dos categorías propuestas por Blevins et. al (2019) quienes señalan que los hashtags suelen representar ya sea la posición que toman los usuarios o la interpretación de estos sobre los eventos con los que entran en relación. Así, el primer tipo de hashtags serían marcadores ideológicos mientras que los segundos, representan el grupo de marcadores conceptuales.

Adicionalmente, al estudiar la lista de hashtags hemos decidido añadir nuevas categorías: primero, separamos aquellas etiquetas que refieren al Evento “en sí”, y que representan nuestros criterios de búsqueda; separamos también las etiquetas que hacían referencias a lugares, a personas, a fechas o momentos del día y una última categoría que denominamos “Topic” para aquellos temas que se salían de la discusión o que referían a temas específicos.

Distribución de los hashtags utilizados por los usuarios que conforman la muestra. El tamaño de los cuadros de hashtag expresa su grado con pesos dentro de la red HT2HT.

Las etiquetas de Evento (15) representan el 10.3% del total de hashtags utilizados. Las que conforman la mayoría del discurso son los marcadores Conceptuales (70 hashtags, 48% del total). El resto son los marcadores Ideológicos (13 HT’s, 8.9%), de Lugar (20 HT’s. 13.7%), de Tópico (15 HTs, 10.3%), de Persona (10 HTs, 6.8%) y Tiempo (3 HTs, 2%).

Si seguimos lo hasta aquí expuesto, la mayor parte de los mensajes que conforman la muestra, al utilizar marcadores conceptuales, estarían produciendo un discurso que busca interpretar o “enmarcar” la coyuntura política de la que están participando.

Por “enmarcamiento” nos referimos a los marcos interpretativos a partir de los cuales un grupo busca hacer sentido tanto de su acción como de los eventos, y esta definición de intereses se da en contraposición a otros grupos (Treré, 2015).

Lo anterior nos parece importante porque, lo que intenta ensayar esta respuesta es: que dado que parecen existir dos esferas en discusión, luchando por la definición del espacio político digital, la forma en que buscan enmarcar (o dar significado a) los eventos importa por lo que propone tanto a sus adherentes como a los públicos de esta conversación.

¿Cómo proponen estas redes antagónicas el discurso digital? Para tratar de hallar pistas al respecto hemos vuelto a categorizar las etiquetas obtenidas, esta vez, definiéndolas como parte de un discurso “Anti AMLO” y uno “Pro AMLO”. Esta decisión, un tanto arbitraria, solo intenta seguir la línea que los mensajes sugieren. No es una definición normativa como guiada a la vez por los datos y por el criterio analítico que aquí hemos seguido.

Del total de etiquetas, 47 se clasificaron como “Anti AMLO” (32.2%) mientras que 48 cayeron en la categoría “Pro AMLO” (32.8%). Un total de 9 etiquetas (6.16%) fueron calificadas como “Ambiguas” pues, al revisar los mensajes parecían usadas de forma indistinta por sendos grupos mientras que 42 (28.7%) no calificaron en ninguna de las categorías.

Distribución de los hashtags utilizados en la conversación por “orientación” ya sea a favor o en contra de Andrés Manuel López Obrador.

El discurso “Pro AMLO”

La tabla mostrada a continuación muestra la distribución de las etiquetas “Pro AMLO”. Las más utilizadas de las 48 etiquetas fueron las Conceptuales (30 HTs, 62.5% del total de este grupo). El discurso digital del grupo a favor de López Obrador dedica parte de sus esfuerzos hacia la #marchafifí, forma en la que designa a la movilización opositora que se realizó el 1 de diciembre del Ángel de la Independencia al Monumento a la Revolución. Es una etiqueta de directo antagonismo al grupo adversario. Pero le siguen en importancia hastags tales como #AMLONoEstasSolo, #GobiernoDelPueblo y #EsUnHonorEstarConObrador, entre otros. El enmarcamiento que parecen proponer es a la vez de contraposición con el grupo adversario y de unidad en torno a la imagen del presidente de la república. De ahí que otras etiquetas asociadas en esta parte del discurso sean #OposicionMoralmenteDerrotada entre otros.

La identidad del grupo se engloba en torno a etiquetas como #amlovers, #todosalzocaloconAMLO, #AMLOestamoscontigo (esta última, aunque similar a la conceptual #AMLONoEstasSolo, se colocó en este grupo por la definición de la primera persona con la que se construyó la etiqueta).

Distribución y categorías de los hashtags utilizados en la conversación por la red “Pro AMLO”. El tamaño de los recuadros expresa su grado con pesos dentro de la red.

Lo que parece proponer, de manera global, la red “Pro AMLO” es la existencia de un sector que apoya incondicionalmente al personaje político que engloba la discusión. Interpretan y proponen la discusión desde una posición superior a la de la oposición y de cohesión en torno a la imagen de López Obrador.

El discurso “Anti AMLO”

La siguiente tabla muestra la distribución de las etiquetas “Anti AMLO”. Las más utilizadas (34 HTs, 72.3% del total del grupo) son de nuevo, Conceptuales. En el discurso digital contra López Obrador aparece como más central #AMLORenunciaYA, acompañada de etiquetas como #LopezElFracasoPresidencial, #FueraAMLO, #AMLOEsUnFracaso, entre otras del mismo tipo. La estrategia de enmarcamiento del grupo opositor parece proponer la desaprobación de la gestión presidencial y la demanda de renuncia del gobierno en curso. Pero también hay etiquetas que buscan oponerse a la otra red, del mismo modo que aquella propuso #marchafifí, en el discurso “Anti AMLO” hay etiquetas como: #AcarreadosDeLopez, #LosDelZocaloSonAcarreados. Sin embargo, el discurso antagónico hacia el otro grupo no es tan central, sino que la desaprobación presidencial es el principal contenido del discurso digital de esta red.

La toma de posición de esta red se engloba en etiquetas como #MarchaPorElCambio y #OposiciónCiuadadana, e incluso #AntiAMLO, entre otras. Lo que esta sección del discurso parece proponer es su diferenciación con el grupo antagónico, pero además, la de una composición ciudadana — que implícitamente sugiere que otros grupos no lo son — bajo la cual se buscaría establecer la legitimidad de la demanda.

Distribución y categorías de los hashtags utilizados en la conversación por la red “Anti AMLO”. El tamaño de los recuadros expresa su grado con pesos dentro de la red.

En resumen, la movilización digital “Anti AMLO” no solo propone desaprobar la gestión de López Obrador sino significar su activación como legítima y ciudadana, un valor que buscarían reivindicar para aumentar la cohesión del grupo.

Activación y diálogo: el intersticio de las redes

Un problema al captar hashtags mediante extracciones de Twitter es que se vuelve difícil “ver” a aquellos usuarios que se han incrustado en el debate sin utilizar las etiquetas.

Mientras que los grupos a favor o en contra de López Obrador, en redes, parecen tener cierta cohesión (si bien pueden ser en parte producto de automatismos, no hay que subestimar la cantidad de usuarios “reales” que participan y se compromete con la discusión), más que diálogo parecen existir dos cajas de resonancia que se aíslan una a la otra, pero que no dejan de dirigirse mensajes, calificaciones y reivindicaciones.

Pero es en el intersticio que se forma entre estas dos esferas donde podría estarse dando el verdadero debate entre usuarios, el verdadero diálogo, si alguno. Quizá uno de los efectos de estas redes de activación digital en torno a las coyunturas políticas, con el uso estratégico de hashtags que tienen, es la invisibilización de los espacios de diálogo que el ambiente digital provee a los usuarios.

En contra de la hipótesis de la polarización (que no está exenta de valiosas interpretaciones del fenómeno), lo que queremos decir con esta respuesta ensayada es que, es posible que uno de los efectos de la disputa por las redes digitales sea la reducción de la densidad o el sometimiento a la gravedad de los hashtags de esos intercambios comunicativos valiosos y que no dejan de presentarse en las redes pero que se vuelven más difíciles de ver cuando el algoritmo nos conduce hacia los mensajes más virulentos a veces, y masivos casi siempre, de las redes antagónicas que se disputan el derecho a designar e interpretar el espacio político digital en el que nos encontramos.

Referencias

Blevins, J. L., Lee, J. J., McCabe, E. E., & Edgerton, E. (2019). Tweeting for social justice in #Ferguson: Affective discourse in Twitter hashtags. New Media & Society, 21(7), 1636–1653. https://doi.org/10.1177/1461444819827030

Treré, E. (2015). Reclaiming, proclaiming, and maintaining collective identity in the #YoSoy132 movement in Mexico: An examination of digital frontstage and backstage activism through social media and instant messaging platforms. Information, Communication & Society, 18(8), 901–915. https://doi.org/10.1080/1369118X.2015.1043744

Xu, S., & Zhou, A. (2020). Hashtag homophily in twitter network: Examining a controversial cause-related marketing campaign. Computers in Human Behavior, 102, 87–96. https://doi.org/10.1016/j.chb.2019.08.006