[Artículo] Estudios Sociológicos 40(118): Campañas de acción digitalmente mediada[Artículo] Estudios Sociológicos 40(118):

[Artículo] Estudios Sociológicos 40(118): Campañas de acción digitalmente mediada[Artículo] Estudios Sociológicos 40(118):

La Revista Estudios Sociológicos editada por el Centro de Estudios Sociológicos de El Colegio de México (CES-COLMEX) publica la nota de investigación Campañas de acción digitalmente mediada: un modelo de análisis de la acción colectiva en espacios sociodigitales. El caso #Verificado19s en el número 118 del primer trimestre de 2022.

El texto presenta los elementos conceptuales bajo los cuales se caracterizó la noción de campaña presente en la literatura de dinámica contenciosa, especialmente en el trabajo de Charles Tilly en quien se basa gran parte de su definición. Sin embargo, el trabajo busca ofrecer características así como elementos del modelo de análisis propuesto por Tilly para aplicarlo a un espectro más amplio de fenómenos de la acción colectiva.

A partir de lo dicho por Tilly y las reflexiones del autor, se propone definir a la campaña como una serie de episodios de acción colectiva emprendidos por individuos, organizaciones o coaliciones, que movilizan una reivindicación de cualquier tipo durante un periodo de tiempo hacia uno o más actores (2022:246) y plantear el proceso que va de una campaña a otra como un fenómeno que se puede rastrear empíricamente a partir de la reconstrucción de los eventos que detonaron en la acción colectiva.

A partir del caso de #Verificado19s, la organización que emprendió acciones de verificación de información y canalización de ayuda humanitaria tras los terremotos de 2017 en México, se puso a prueba una de las implicaciones del modelo analítico basado en campañas: que toda instancia de acción colectiva esta condicionada por eventos previos.

A partir de testimonios y observación etnográfica pero también de análisis de datos de redes sociodigitales, se pone a prueba esta implicación y se plantea el modelo de campañas de Tilly como una herramienta analítica útil para el rastreo de procesos de acción colectiva.

El trabajo puede consultarse en: https://estudiossociologicos.colmex.mx/index.php/es/article/view/2298

O descargarse en PDF.

Para citar:

Flores Mérida, A. (2022). Campañas de acción digitalmente mediada: Un modelo de análisis de la acción colectiva en espacios sociodigitales. El caso #Verificado19s. Estudios Sociológicos, 40(118), 243-262. http://dx.doi.org/10.24201/es.2022v40n118.2298

[Artículo] Virtualis, 13(24): Análisis de Hashtags en Twitter

[Artículo] Virtualis, 13(24): Análisis de Hashtags en Twitter

Virtualis, Revista de Cultura Digital, publicó en su número 24 del año 2022 el artículo Análisis de hashtags en Twitter: uso estratégico de plataformas de #Verificado19s tras los sismos de 2017 en México, un trabajo derivado de mi investigación doctoral en la que se recuperan datos históricos de la plataforma Twitter después de los terremotos que golpearon al centro del país en septiembre de 2017.

El trabajo parte de las nociones de campaña desarrolladas durante la investigación doctoral para plantear tres posibilidades de abordaje de uno de los metadatos que ofrece Twitter: las etiquetas o hashtags. Parte de la argumentación que se presenta en este artículo es que en casos de acción colectiva digitalmente mediada, los hashtags tienen un uso estratégico que no se limita a aquél que da nombre a las campañas (en este caso, #Verificado19s) sino que los actores combinan usos y orientaciones de los hashtags en el espacio sociodigital.

El volumen de Virtualis en el que aparece esta publicación, titulado Innovación metodológica para el estudio de la plataformización es coordinado por las doctoras Gabriela Sued y Nohemí Lugo.

El resumen para Virtualis de este texto señala: El presente trabajo propone una forma de analizar los hashtags utilizados en Twitter en el marco de campañas de acción colectiva digitalmente mediada. Para ello, se exploran los mensajes publicados con el hashtag #Verificado19s en esa plataforma tras los terremotos ocurridos en septiembre de 2017 en México. Se propone que los actores colectivos llevan a cabo un uso estratégico del hashtag y que este se corresponde con el programa de acción de su campaña. Para explorar esta implicación, analizamos las frecuencias, interacciones y clasificamos los hashtags presentes en los mensajes de #Verificado19s y observamos que los usos se relacionan con las necesidades materiales identificadas por el actor colectivo, aunque también se identificaron usos emergentes distintos a los propuestos por la organización. La investigación propone una forma de explorar los hashtags como unidad de análisis con miras a identificar configuraciones del uso de los mismos en redes sociodigitales. 

El trabajo puede descargarse directamente desde la web de la revista en: https://www.revistavirtualis.mx/index.php/virtualis/article/view/393/544

También puede consultarse en PDF o ePub.

Para citar:

Flores Mérida, A. (2022). Análisis de hashtags en Twitter: Uso estratégico de plataformas de #Verificado19s tras los sismos de 2017 en México. Virtualis, 13(24), 58-83. https://doi.org/10.46530/virtualis.v13i24.393

#JusticiaParaAri: reclamo de justicia y la mediatización de la violencia feminicida

#JusticiaParaAri: reclamo de justicia y la mediatización de la violencia feminicida

Ariadna Fernanda López tenía 27 años. El 30 de octubre pasado, después de acudir a una reunión con amigos, desapareció y fue encontrada dos días más tarde junto a una carretera en el municipio de Tepoztlán, en Morelos. Familiares y amigos habían empezado a buscarla y su imagen pobló las redes sociodigitales. Al saberse de su muerte, emergió el reclamo: #JusticiaParaAri.

El hashtag es uno más en la interminable bitácora digital de la violencia feminicida en México. Tan solo de enero a octubre de 2022, CIMAC documentó más de 2 mil 500 asesinatos de mujeres, de los cuales, 600 calificaron como feminicidio. La estremecedora cifra no está lejos de alcanzar o incluso superar los 977 feminicidios documentados por las autoridades en el año 2021.

Tras su desaparición y muerte, las investigaciones para esclarecer la muerte de Ariadna Fernanda han dado varios giros. La Fiscalía de Morelos afirmó dos días después de que se hallara su cuerpo que la joven había fallecido por broncoaspiración, sin embargo, la Fiscalía de la Ciudad de México rechazó esos resultados y acusó al fiscal de Morelos, Uriel Carmona, de una operación de encubrimiento del feminicidio de Ariadna Fernanda. La fiscalía capitalina informó sobre una segunda necropsia realizada a la joven que determinó su fallecimiento a causa de golpes y posteriormente, se dieron a conocer videos que muestran a una persona trasladando el cuerpo sin vida de la joven desde un departamento en la Ciudad de México y con destino desconocido. El sujeto, Rautel “N”, fue señalado como posible autor material del feminicidio en complicidad con su pareja, Vanessa “N”, quienes en primeras declaraciones habrían señalado que Ariadna abordó un taxi. Luego se sabría que se coordinaron para despistar a las autoridades.

Las investigaciones, las declaraciones de implicados y la confrontación más política que judicial entre las autoridades de CDMX y la Fiscalía de Morelos, han enmarcado el feminicidio de Ariadna Fernanda pero, con ello, desdibujado el reclamo de justicia de familiares y amistades de la víctima, así como de una ciudadanía indignada por la violencia feminicida en nuestro país.

Para explorar la discusión y tratar de encontrar la dimensión del reclamo, exploramos la conversación en Twitter que durante los últimos días ha girado en torno a la joven Ariadna Fernanda López.

La mediatización de la tragedia: olas de discusión y el reclamo #JusticiaParaAri

La discusión en torno al feminicidio de Ariadna Fernanda parece haber seguido el ritmo de los flujos informativos en torno a las investigaciones judiciales. Esto, antes que permitir mayor densidad al reclamo de #JusticiaParaAri parece mantenerlo en un segundo plano, manteniendo las confrontaciones entre autoridades en primer nivel de la discusión.

Para tratar de describir estos ritmos de discusión se descargaron 85,903 publicaciones de Twitter que respondían a los siguientes términos: “caso ariadna”, “rautel n”, #JusticiaParaAri, #AriadnaFernanda. El objetivo detrás de esta estrategia de búsqued fue tratar de captar todas las discusiones relacionadas al feminicidio de Ariadna Fernanda. En lugar de limitar la descarga a un solo término o conjunto de palabras, buscamos aquellas que aparecían más frecuentemente en torno a este evento y las concentramos en una sola llamada a la API de Twitter.

La siguiente gráfica muestra la distribución de las publicaciones que conforman la muestra. Se distinguen los tuits originales (azul) de los retuits (naranja). Debido a la ventana que ofrece la API de Twitter, la llamada hecha el 10 de noviembre permitió recuperar solo tuits desde el 3 de noviembre, un día después del hallazgo del cuerpo de Ariadna Fernanda.

Si bien, las publicaciones de reclamo con #JusticiaParaAri estuvieron presentes desde el 3 de noviembre, es a partir del lunes 7 cuando la discusión empieza a aumentar en la plataforma. Ese día, las declaraciones de las autoridades de CDMX confrontando a la Fiscalía de Morelos empiezan a poblar los medios, a su vez, se dicta prisión preventiva a Vanessa “N”, implicada en el feminicidio, se revelan imágenes de Rautel “N” trasladando el cuerpo de Ariadna y, el mismo sujeto implicado se entrega a las autoridades en el estado de Nuevo León.

EL martes 8 de noviembre, el feminicidio de Ariadna es el objeto de la confrontación entre el fiscal de Morelos, Uriel Carmona, y la jefa de Gobierno de la Ciudad de México, Claudia Sheinbaum, entre quienes se intercambian acusaciones. Y aunque Rautiel “N” y Vanessa “N” ya se encontraban en prisión y próximos a enfrentar proceso, la discusión mediática poco o nada tenía que ver con el fenómeno de la violencia feminicida y la necesidad de procurar justicia a Ariadna Fernanda y más con la confrontación entre autoridades.

Cuando vemos la forma en que se desenvolvió la conversación (Gráfico 2), se ve cómo la mayor intensidad se encuentra entre las últimas horas del domingo 6 y primeras del miércoles 9 de noviembre.

Gráfico 2

Mediáticamente, es la discusión política la que mantiene la relevancia del tema. Para revelar la capa de reclamo de justicia, se descargaron exclusivamente las publicaciones con las etiquetas #JusticiaParaAri y #AriadnaFernanda y el patrón de publicaciones es similar. De hecho, si se compara la descarga global con la sub-muestra, se puede notar que esta última representa más de la mitad de la primera. La segunda descarga nos ofreció 52,467 publicaciones en el mismo periodo y su comportamiento se puede notar en el siguiente gráfico interactivo.

Los días 7 y 8 de noviembre son los más activos con más de mil y mil 600 tuits originales, respectivamente, usando los hashtags, que generaron a su vez más de 10 mil republicaciones en cada jornada.

Es decir, el reclamo de #JusticiaParaAri no solo está presente en la discusión sino que parece el más denso de la misma. ¿Por qué la representación mediática de este feminicidio parece entonces tan centrada en la confrontación entre autoridades?

En la Nube de Emojis que se presenta a continuación se encuentran los 300 marcadores gráficos presentes en los mensajes de la muestra principal con que se elaboró esta entrada. Como se puede ver, son marcadores de alerta y de medios (🚨 🔴 📺 📰 👇 📻) los que alcanzan una mayor frecuencia.

Nube de Emojis

Sin embargo, también hay marcadores afectivos que están presentes, los que manifiestan rabia y molestia (😡 🤬), tristeza y dolor (😭 😢 😓 😞 💔), el corazón violeta del activismo digital feminista ( 💜 ) y, de forma difícil de entender, el emoji de burla ( 😂 ) que parece poner de manifiesto la presencia de discusiones que banalizan o que usan el evento para confrontar a sus adversarios políticos.

Es decir, si bien en términos de presencia y densidad, el reclamo #JusticiaParaAri está presente en los datos analizados, y parte de ello se manifiesta en marcadores gráfico-emocionales de rabia, tristeza y movilización, la mayor preponderancia parecen obtenerla las representaciones mediáticas del caso que, habida cuenta la cobertura, han tendido a centrarse en la confrontación entre autoridades de Morelos y Ciudad de México.

Las interacciones digitales

Para explorar una capa adicional de esta muestra de mensajes, graficamos las interacciones entre usuarios y los hashtags más usados en la conversación. El Grafo 1 consiste de 21,519 nodos y 45,695 aristas que construyen entre sí 59 comunidades. Es posible encontrar las etiquetas o hashtags más usados en la conversación entre el 3 y 10 de noviembre pasados.

Los hashtags con mayor preponderancia fueron #AriadnaFernanda (in-degree 9955) seguido de #JusticiaParaAri (in-degree:6993). El segundo expresa más la dimensión del reclamo en tanto que el primero, con el nombre de la víctima, capta parte del mismo pero también fue usado por los outlets informativos para construir los públicos digitales en torno al feminicidio.

Grafo 1: Interacciones entre usuarios y hashtags (U2HT). N: 21519; E: 45,695. A partir de una muestra de 85,903 mensajes en Twitter con los términos: “caso Ariadna”, “Rautel N”, #JusticiaParaAri y #AriadnaFernanda.

En importancia aparecieron otras etiquetas como #UltimaHora (in-degree:3648) y #Feminicidio (2727), además de #Video (2107) que podrían haber condensado parte de la conversación de medios informativos, sobre todo tras la revelación del video que muestra a Ariadna Fernanda llegando a un restaurante donde se encuentra con sus presuntos victimarios, Rautel y Vanessa “N”.

También aparecen hashtags como #CDMX, #Morelos, #ImagenesFuertes y #Rautel. Como se ve, las etiquetas con mayore preponderancia siguen las discusiones informativas. No obstante eso, #JusticiaParaAri es la segunda de mayor importancia y alrededor de ella se condensa buena parte de la conversación.

Otra cosa a considerar es que, entre los usuarios con mayor presencia por grado de salida, hay cosas qué distinguir: la cuenta con mayor número de mensajes fue @notasausencia, un perfil que documenta casos de desapariciones de mujeres y que forma parte del núcleo de activismo feminista en redes sociodigitales. Las otras cuentas están repartidas entre usuarios que se expresan (ya sea en sus perfiles o prácticas) como a favor o en contra del actual gobierno federal, seguidos de periodistas (@anafvega, @corresponsalesMX, @AztecaNoticias, entre otras).

Aunque se esperaba ver a más cuentas de activismo entre las más activas, en realidad son las cuentas mediáticas y los usuarios que confrontan sus filiaciones políticas los más prolíficos en número de mensajes emitidos.

Es decir, la discusión sobre el feminicidio de Ariadna Fernanda se ha plasmado, en primer lugar, en una contienda mediática y, en segundo lugar, en reclamo colectivo de justicia. De hecho, al explorar con mayor detalle las comunidades, esta afirmación puede mantenerse.

En el Grafo 2 se muestran dos comunidades. La de mayor tamaño en la esquina superior derecha tiene, ante todo, discusiones en tono informativo sobre el caos. En tanto, la siguiente, en la parte inferior izquierda concentra las etiquetas de reclamo de justicia para Ariadna Fernanda.

Grafo 2. Comunidades de mayor tamaño en la conversación.

La primera comunidad cuenta con 6,677 nodos y 11,082 aristas captando el 21% de la conversación. La segunda comunidad en torno a #JusticiaParaAri es ligeramente menor en tamaño y densidad (5,575 nodos y 6,789 aristas) pero es ahí donde se discute el reclamo de justicia. Las etiquetas con mayor grado de entrada ahí son #JusticiaParaAri (in-degree 6,693) seguida de #NiUnaMas (600), #JusticiaParaAriadna (477), #NiUnaMenos (296) y emergen, ahí mismo, otros llamados: #JusticiaParaLidiaGabriela, #JusticiaParaFer, #MexicoFeminicida, entre otros.

El Grafo 3 es uno de interacciones entre usuarios (usuario-a-usuario) y consta de 36,219 nodos y 85,300 interacciones entre ellos, alrededor de 187 comunidades. Es en estas interacciones donde se hace visible que las comunidades de discusión pendulan entre lo informativo, la politización del caso y el activismo en reclamo de justicia.

Grafo 3. Interacciones entre usuarios (U2U). N: 36,219, E: 85300. A partir de una muestra de 85,903 mensajes en Twitter con los términos: “caso Ariadna”, “Rautel N”, #JusticiaParaAri y #AriadnaFernanda.

A destacar, antes que nada, los usuarios con mayor grado de entrada (ya sea porque recibieron un mayor número de retuits o menciones). Se trata de la cuenta @FansDeMiyagi (in-degree 4805) que aborda distintos temas y tiene cierto grado de micro-influencia por su número de seguidores (más de 19K) y que desde el primer momento empezó a emitir mensajes para alertar de la desaparición de Ariadna Fernanda. Sus publicaciones adquirieron después un mayor tono de reclamo.

La segunda cuenta en importancia es la de la jefa de gobierno, @Claudiashein (in-degree 3919) cuya presencia en la discusión aumentó tras usar los espacios de sus conferencias de prensa para confrontar al fiscal de Morelos, Uriel Carmona. Otras cuentas relevantes fueron la @FiscaliaCDMX in-degree 3060), la activista @MerGarza (2517), el reportero de NMas, Antonio Nieto @siete_letras (2275), y la de la periodista Itzel Cruz @i_alaniis (2165).

También fueron relevantes por grado de entrada la cuenta activista @Funesta, la académica @yulizuarth, la periodista @azucenau, y las cuentas del fiscal de Morelos @UrielCarmona17 y su @Fiscalia_Mor.

Al explorar las comunidades de mayor tamaño encontramos en el Grafo 4 que hay tres núcleos de discusión.

Grafo 4. Comunidades de mayor tamaño y densidad.

En la primera se concentra el 17% de la conversación, es la que se halla en la esquina inferior derecha y en la que, además de cuentas de medios de comunicación, se encuentran usuarios pertenencientes a la denominada 4T. Parece ser un núcleo donde el feminicidio de Ariadna Fernanda ha sido más politizado que discutido en tono de reclamo de justicia.

Esa primera comunidad está directamente enlazada a la tercera de mayor tamaño, que con el 11.61 de los nodos se encuentra en la zona central izquierda. Ahí se conforma la discusión mediática del feminicidio de Ariadna Fernanda. Está en comunicación con la zona de discusión política y presenta, además de a periodistas y medios, a la @FiscaliaCDMX.

Es la segunda comunidad en importancia, con su 15% de la conversación en la zona superior izquierda donde se pueden ver cuentas como @FansDeMiyagi o @Funesta que discuten desde la dimensión del reclamo.

En este tablero se pueden explorar los tuits por usuario y número de retuits, ubicando a algunos de los usuarios aquí citados. De hecho, una primera exploración permite ver que los tuits de #JusticiaParaAri son los más importantes pero, conforme se avanza en la búsqueda, las discusiones informativas (y aquellas que reproducen la confrontación entre autoridades de CDMX y Morelos) empiezan a adquirir relevancia en la producción de mensajes.

Mediatización y politización invisibilizan la injusticia

Si bien, la cobertura de los medios y la forma en que los personajes políticos discuten acontecimientos como es el feminicidio de Ariadna Fernanda, muchas veces la forma en que nos representan los hechos estos espacios mediáticos hacen que se pierda de vista o incluso, se deje en segundo plano la gravedad del fenómeno en cuestión y la necesidad del reclamo de justicia.

La indignación, la rabia y la tristeza que embarga a los familiares y amistades de las víctimas, así como a un país continuamente agraviado por la injusticia y la violencia, quedan en segundo plano cuando el encuadre de los medios mantiene como relevante la disputa política y politizada entre sectores de partido o interés cuyas omisiones revictimizantes, sin duda, deben ser juzgadas, condenadas y castigadas.

La descarga de datos ha permitido explorar la discusión de los últimos días. Para captar más elementos de la complejidad de las interacciones sociodigitales, en lugar de un solo término de búsqueda o una sola etiqueta/hashtag, se realizó una búsqueda combinada de términos, palabras y etiquetas. Esto permitió captar distintas comunidades de discusión que a su vez, nos permiten proponer una interpretación de cómo se construye la discusión ciudadana en espacios sociodigitales sobre el fenómeno de la violencia feminicida en nuestro país.

La #RevocaciónDeMandato en Twitter: comunidades de discusión digital

La #RevocaciónDeMandato en Twitter: comunidades de discusión digital

Esta publicación apareció originalmente en Medium el 17 de marzo de 2022

El próximo 10 de abril se llevará a cabo, por primera vez en México, un ejercicio de consulta para revocar el mandato al presidente de la república. El nuevo instrumento de participación ciudadana fue una de las promesas de campaña del actual presidente, Andrés Manuel López Obrador (AMLO), y fue aprobada por la Cámara de Diputados y el Senado de la República en septiembre de 2021.

Aunque prevista como un instrumento para retirar de su cargo a un presidente por “pérdida de la confianza” de la ciudadanía, han sido simpatizantes del mandatario emanado del partido Movimiento Regeneración Nacional (MORENA) quienes recabaron las firmas necesarias para solicitar la consulta. Tras el escrutinio de la solicitud ciudadana,el Instituto Nacional Electoral (INE) convocó en febrero pasado para que el próximo 10 de abril la ciudadanía acuda a las urnas y decida si el presidente continúa en el cargo.

La organización del ejercicio de revocación de mandato ha sido objeto de disputa política en distintos momentos pero, en lo que respecta a los preparativos y su organización, las diferencias se han intensificado. El presupuesto solicitado por el INE para sus funciones durante 2022 incluía una partida para la revocación de mandato, pero el requerimiento no fue aceptado por el Poder Legislativo (encargado de la aprobación de presupuesto) y finalmente, la Suprema Corte ordenó al instituto acatar los recortes y organizar el ejercicio. Por su parte, el presidente AMLO ha lanzado severas acusaciones al instituto (respecto al presupuesto, la organización y cumplimiento del ejercicio); la última tuvo lugar en días pasados cuando el mandatario acusó al instituto de no promover la consulta como parte de una estrategia golpista contra su gobierno.

Al igual que en otros momentos de la efervescencia política del país, la consulta de revocación de mandato en México también ha formado parte de la discusión digital. Sin embargo, parece ser que el tema no ha logrado la tracción que otros momentos de la vida política han tenido (las elecciones intermedias de 2021, por ejemplo).

A su vez, los espacios sociodigitales siguen siendo un territorio de disputa discursiva pero, también, de construcción colectiva del significado de los hechos políticos contemporáneos. En el caso de Twitter, no queda duda de su rol como espacio para la difusión de información y construcción de sentido sobre los eventos del momento (Sued y Cebral, 2020), mientras que muchos estudios han destacado el papel que cumplen estas plataformas ya sea para conectar a la ciudadanía con sus representantes políticos sobre todo en periodos electorales (Biswas et al., 2014), para impulsar a ciertos personajes en sus aspiraciones (Sobaci et al., 2016) o como fuente de información y movilización en procesos electorales (Barredo, Rivera y Amézquitan, 2015).

Algunos abordajes sobre la vida política nacional señalan por una parte el componente de polarización discursiva que ocurre en Twitter. El proceso electoral de 2021 dio cuenta de ello en torno al rol del INE en la organización del ejercicio (Véase, por ejemplo, el apartado El INE en Twitter, una hipótesis fallida, en el informe realizado por Signa_Lab al respecto). Sin embargo, también se ha dado cuenta de la apropiación del discurso político por parte de la ciudadanía y la forma en que se abordan fenómenos que ocurren en el contexto de procesos electorales, como la reciente pandemia de COVID y la violencia.

Aunque consideremos importante analizar el potencial de movilización electoral de las plataformas sociodigitales, en este caso y ante la cercanía del ejercicio de revocación de mandato (y su carácter sui generis en el contexto político mexicano) parece factible aproximarnos al fenómeno a partir del rol de difusión de información y encuadramiento simbólico que las redes sociales en general y, en este caso, Twitter, cumplen. Por ello, se ha decidido explorar algunos datos provenientes de este servicio para indagar sobre qué se está diciendo sobre la revocación de mandato.

¿Qué se discute en Twitter sobre el ejercicio de revocación de mandato? A partir de esta interrogante, trataremos de captar distintas dimensiones: por una parte, las interacciones entre usuarios a partir de este tema; dichas interacciones tienden a agruparse en comunidades de discusión, por ello, también trataremos de captar qué se comunica en dichos espacios discursivos; a partir de estos dos elementos, quizá sea posible acercarnos a los distintos encuadres propuestos por los actores que se han involucrado en el debate público digital.

#RevocaciónDeMandato: poca densidad de la discusión para un ejercicio nacional de participación ciudadana

Para este ejercicio, se extrajeron publicaciones que utilizaran el hashtag #revocaciondemandato (sic) en Twitter. La descarga se realizó mediante el software R (R Core Team, 2021) y la librería ‘rtweet’ (Kearney, 2020). El resultado fue un conjunto de datos conformado por 9,593 tuits que abarcan un periodo que va del 9 al 17 de marzo (Nota 1). Las publicaciones obtenidas no contemplan retuits, por lo que se tratan de tuits únicos u originales.

Cabe señalar que se exploraron otras etiquetas (#AmloSeQueda, #QueNoSiga, #QueSigaLaDemocracia, etc.) pero la cantidad de datos ofrecidos para este periodo era mucho menor. Esto por un lado, nos deja con un hashtag (HT) temático, que no plantea una postura de inicio (ya sea por la formulación propuesta o la combinación de palabras) como sí podrían estarlo planteando otras opciones y que nos habrían llevado a otro tipo de preguntas y resultados. Por ejemplo, algunos como #AmloSeQueda o #QueSigaAmlo están claramente apoyando el ejercicio y la “ratificación” de mandato al presidente mientras que otros son claramente opuestos (#QueSeVaya, #QueNoSiga) y que, de haberse extraído -ya sea por separado o en conjunto- habrían dado como resultado una clara polarización producto del propio diseño de la búsqueda. En su lugar, el HT #revocaciondemandato alude en principio al ejercicio, aunque otras etiquetas pueden co-ocurrir con esta, como se explorará más adelante.

Identificando comunidades por principio de modularidad

Como primer paso, del conjunto de datos se extrajeron las variables screen_name y hashtags para crear una matriz de adyacencia a partir de la cual se pudiera conformar un grafo de usuarios-a-hashtags. Posteriormente, se extrajeron, además del screen_name, los valores mentions_screen_name, quoted_screen_name, in_reply_to_screen_name. A partir de estas variables se construyó una segunda matriz de adyacencia para obtener un grafo de usuario-a-usuario para las interacciones mención, retuit citado y respuesta.

Los datos fueron cargados en el software Gephi (Bastian et al., 2009) y se sometieron al mismo tratamiento: cálculos a nivel de nodo, cálculo de modularidad para estimar comunidades, tamaño de nodos y etiquetas por grado (entrada o salida, según se indique), colores de aristas por comunidad, distribución mediante Force Atlas 2.

El primer grafo es el de usuario-a-usuario (U2U) que cuenta con 4,738 nodos y 7,797 aristas o interacciones. Cada nodo cuenta con un grado medio de 1.64, lo que indica un bajo número de conexiones entre nodos aunque cabe esperar que algunos concentren gran cantidad de las mismas. El cálculo de modularidad (0.6) produjo 839 comunidades.

Algo a tener en cuenta en el Grafo 1 es que tres comunidades destacan por su tamaño (comunidad 12, con 15.41% del grafo; la 3 con el 10.36% y la 314 con 9.9%).

Grafo 1. Interacciones entre usuarios (U2U). El tamaño de las etiquetas es proporcional al grado de entrada (N: 4,738, E: 7,797)

Las comunidades en las que se concentra mayor grado de entrada indican una distribución de cierto tipo de usuarios. En la comunidad azul claro muestra a la cuenta oficial del INE (@INEMexico) al centro y muy cerca a las de los consejeros @CiroMurayamaINE y @LorenzoCordovaV, como el target de múltiples menciones provenientes de variados usuarios. Una segunda comunidad violeta coloca con mayor centralidad a la cuenta del @PartidoMORENAMx seguida en cercanía por la de la jefa de gobierno de la Ciudad de México (del mismo partido) @ClaudiaShein, así como las cuentas oficiales del Poder Legislativo y la del presidente de MORENA, @mario_delgado. Una tercera comunidad en color verde muestra cuentas de comunicadores como @lopezdoriga, @CarlosLoret, @ChumelTorres, @PedroFerriz así como otros usuarios.

En términos generales, al destacar el grado de entrada, lo que estamos viendo son interacciones dirigidas a tres tipos de usuarios: por un lado, a la autoridad electoral o sus integrantes, posteriormente a miembros de MORENA y en tercer lugar, a integrantes de los medios de comunicación. No omitimos que el usuario del presidente AMLO (@lopezobrador_) se encuentra al centro de otra comunidad naranja que está prácticamente al centro del grafo, lo que implica cierta cercanía con las comunidades antes señaladas.

La forma en que se tejen y dirigen las interacciones en Twitter podría estar señalando encuadramientos discursivos específicos para ciertos tipos de usuarios (autoridades electorales, personajes del oficialismo -la autodenominada 4T- y de los medios de comunicación) así como al presidente de la república, objeto del ejercicio de #revocaciondemandato.

Los hashtags, como hicimos en este caso, no son solo útiles para identificar mensajes temáticos o como criterio de extracción. Varios estudios han señalado que el uso de estas etiquetas tiene cierto carácter estratégico por parte de los usuarios. Sirven para crear públicos ad hoc para cierto tipo de tópicos (Xu y Zhou, 2020) o para proponer encuadres simbólicos (interpretación o posición de los usuarios respecto a ciertos temas, como señalan Blevins et al. 2019). Por ello, se ha construido un Grafo 2 que muestra interacciones de usuarios-a-hashtags (U2HT).

El Grafo 2 consta de 4,590 nodos y 8,881 aristas (grado medio: 1.9, modularidad 0.53 para 90 comunidades). Las relaciones entre usuarios y hashtags es más densa que en el grafo anterior y contamos con comunidades más robustas (comunidad 9 con 43.36% del grafo, la 6 con 19.8 y la 1 con 16.06%). Esta mayor densidad de comunidades nos permite afirmar cierto grado de sistematicidad en el uso de etiquetas específicas.

Grafo 2. Interacciones entre usuarios y hashtags (U2HT). El tamaño de las etiquetas es proporcional al grado de entrada. (N: 4,590, E: 8,881)

Lo primero a reconocer es que la formulación de la frase “revocación de mandato” aparece con distinciones (uso de mayúsculas, acentuación) lo que dispersa algunas comunidades. Pero esto podría ser indicativo de un uso particular de la etiqueta si analizamos el grafo a detalle.

Cuando el HT no lleva acento (#RevocacionDeMandato) en la comunidad naranja (zona superior izquierda) este se asocia con etiquetas de rechazo al ejercicio o algunas utilizadas por grupos opositores al actual gobierno (#UrnasVacias, #NoALaRevocacionDeMandato, #amlofracasopresidencial, #SiVotaSeVa, #TerminasYTeVas entre otros).

En tanto, cuando el HT sí utiliza acentos (#RevocaciónDeMandato) encontramos otra comunidad (verde, inferior derecha) en la que hay una serie de etiquetas que son usualmente movilizadas por las cuentas oficiales del INE nacional y en los estados (#INEMexico, #MiINENosUne, #10DeAbril, #ListaNominalDeElectores).

Finalmente, las dos comunidades centrales (azul y violeta) muestra mayor asociación con etiquetas de apoyo al ejercicio desde la simpatía al movimiento 4T (#AMLO, #QueSigaAMLO, #MORENA).

Estas dos exploraciones dan cuenta entonces de que por una parte hay interacciones, ya sea orientadas hacia cierto tipo de actores (autoridad electoral, gobierno y medios de comunicación) aunque también puede estar habiendo cierto grado de amplificación en los mensajes de dichos sectores (cosa que debe analizarse a partir de los metadatos pero que, dado el Grafo 1, cabría esperar). Por otra parte, parece estarse dando cierto grado de uso estratégico del HT #RevocaciónDeMandato igualmente en tres sentidos: como elemento informativo desde la estrategia de comunicación de la autoridad electoral, como elemento de crítica de quienes se oponen al ejercicio y como reforzamiento ideológico desde quienes lo apoyan.

Para abundar en estos elementos, se llevó a cabo un post-procesamiento de los datos: tras obtener el cálculo de modularidad para ambos grafos, se asignó a cada usuario el valor de la comunidad a la que correspondía. El objetivo es explorar el contenido de los mensajes a partir de la comunidad de interacciones de la que el usuario formaba parte.

Comunidades discursivas: discusión, debate, respaldo y crítica en torno a la #RevocaciónDeMandato

El tratamiento de los datos y la visualización que se ofrece de los mismos se produjo mediante el software Tableau (Tableau Software, 2021) en su versión pública. Todas las visualizaciones están disponibles en un tablero en línea que puede consultarse en este enlace.

La Tabla 1 muestra la distribución de las publicaciones con #revocaciondemandato (sic) en el periodo observado. El eje vertical muesra el alcance de los mensajes. Las tres publicaciones con mayor número de retuits pertenecen, en orden: al personaje opositor Javier Lozano quien compartió una imagen de rechazo al ejercicio de revocación de mandato, un mensaje de texto acompañado por un video del actor Damián Alcazar expresando su apoyo al ejercicio, y un mensaje de la jefa de Gobierno, Claudia Sheinbaum en el que critica la orden del INE de retirar propaganda gubernamental durante el periodo del ejercicio electoral.

Tabla 1. Distribución de publicaciones con el hashtag #revocaciondemandato para el periodo del 9 al 17 de marzo.

Como se puede observar, son pocos los mensajes que logran un alcance mayor a los 500 retuits, y pertenecen en su mayoría a personajes políticos, medios de comunicación, cuentas oficiales y escasas micro-celebridades (usuarios con alto número de seguidores). Esto se corresponde con el hecho abordado por Sued y Cebral (2020) de que ciertas “voces autorizadas” que cumplen determinadas funciones sociales (gobierno, medios, periodistas, autoridades, etc.) logran mayor adhesión a sus mensajes, lo que se traduce en un alcance más alto por retuits o involucramiento anímico mediante el botón de Me Gusta (Favorito).

Así, una gran capa de usuarios con poco alcance integra una alfombra de publicaciones con limitado alcance pero en la que, sin duda, se está dando parte de la discusión que se apoya en el encuadre simbólico que las denominadas “voces autorizadas” proponen, ya sea para apoyarlas, discutir con ellas o rebatirlas.

Se ha decidido llamar “comunidades discursivas” a los espacios de construcción de sentido que surgen en torno a ciertas propuestas de enmarcamiento provenientes de lo que Sued y Cebral (2020) llamaron “voces autorizadas”. Las comunidades identificadas en los grafos cuentan con nodos que acumulan cierto grado de centralidad (que en los metadatos estaría representado por número de retuits o favoritos) y en torno a los cuales hay discusión (en concordancia o discordancia con el encuadre simbólico propuesto por dichas voces autorizadas).

Para tratar de identificar estas comunidades discursivas utilizamos la variable Comunidad proveniente del cálculo de modularidad y la asignamos a las publicaciones de Twitter recabadas previamente. En la Tabla 2 se encuentran los mensajes distribuidos por color (para cada comunidad) y tamaño (por número de retuits). Lo que esperamos ver a partir de esta estrategia es qué mensajes tuvieron más alcance en cada comunidad y qué encuadre proponen, así como las diferencias entre comunidades discursivas. (Recomendamos visitar el tablero en línea para explorar estos elementos a mayor detalle)

Tabla 2. Los colores representan las distintas comunidades calculadas en el grafo de interacciones entre usuarios. El tamaño se corresponde con el número de retuits conseguidos. Al navegar en las publicaciones pueden obtenerse detalles de los usuarios y al seleccionar alguna, ir a la publicación original.

Por economía de exposición, se darán detalles de tres de las comunidades más importantes.

La comunidad rosa (o magenta, 314) es la que, por alcance, acumula el mayor número de retuits. En ella se encuentran publicaciones claramente en oposición al ejercicio de revocación de mandato. Dos usuarios forman parte de grupos de oposición partidista (Javier Lozano, Xóchitl Gálvez) quienes critican duramente la próxima consulta. También se hallan mensajes de la periodista Azucena Uresti, en tono más bien informativo. Destaca que en esta comunidad discursiva aparece la publicación de la jefa de Gobierno, Claudia Sheinbaum. Es posible que esto se deba a las interacciones dirigidas a ella y que pudieron concordar con el tono de crítica que prevalece en esta comunidad.

La segunda comunidad de interés es la de color gris (zona inferior izquierda, 12). En alcance, es ligeramente menor a la primera y los mensajes más relevantes provienen de “voces autorizadas”, en este caso, autoridades electorales. La mayoría de los mensajes corresponden a cuentas oficiales del instituto en los estados. Sin embargo, también emergen publicaciones de otros usuarios que ya sea replican contenidos informativos o presentan cuestionamientos al ejercicio de revocación de mandato.

En importancia, la tercera comunidad es la color naranja (centro superior, 3). El usuario más relevante de esta comunidad es Gurú Político, un medio de comunicación digital, que ofrece un encuadre de apoyo al ejercicio de revocación. Le sigue el presidente del Sistema Público de Radiodifusión, el periodista Jenaro Villamil en un tono similar. Aunque el encuadre propuesto por estas cuentas que podrían funcionar en esta comunidad como “voces autorizadas” se muestra en favor de la revocación, gran parte de los mensajes con mayor alcance en este grupo cuestionan el ejercicio críticamente.

Hay que señalar que a excepción de la comunidad 12 (cuentas oficiales de autoridades electorales) que propone en su mayoría una discusión de corte informativo, en el resto de comunidades discursivas hay más bien posiciones a favor o en conra del ejercicio. Las comunidades más grandes o de mayor alcance discuten críticamente la consulta de revocación de mandato. Otras comunidades que siguen en importancia manifiestan cierto grado de apoyo, algunas más cuentan con voces autorizadas de medios de comunicación que presentan también discusiones informativas.

Otra forma de ver esta distribución es la siguiente gráfica que muestra el alcance en retuits por comunidad y el porcentaje que representan del total amplificación para todo el conjunto de datos.

Gráfica 1. Distribución del alcance, medido por número de retuits acumulados, para cada comunidad discursiva.

Lo que la idea de comunidad discursiva nos permite es aproximarnos al encuadre que proponen las y los usuarios que logran un mayor alcance (ya sea porque se trate de figuras relevantes para ciertos grupos o porque han logrado un mayor número de seguidores como parte de su presencia en la plataforma). Esto no debe implicar necesariamente que cada comunidad discursiva imputada acepta la propuesta de significado que producen dichos “notables”, sino que es a partir de ella que se teje la discusión.

Contamos así con espacios de interacción en los que hay una posición claramente en contra del ejercicio, otras en las que hay más apoyo al mismo, y otras en las que hay un tratamiento informativo de la consulta. Estas últimas cumplen, en términos de función social de la plataforma, el rol de difusores de información, sin embargo, sus espacios no están exentos del debate que los usuarios en general tienden a producir.

Los hashtags en la comunidades discursivas sobre la #RevocaciónDeMandato

Como se señaló antes, los hashtags pueden ser utilizados de forma estratégica por los usuarios, tanto para crear audiencias en torno a ciertos tópicos como para ofrecer cierto enmarcamiento (de posición o interpretación de los hechos) en el contexto de la discusión digital.

Partiendo de la noción aproximativa de comunidad discursiva, hemos explorado los mensajes de usuarios en torno a la #revocaciondemandato, pero hemos llevado a cabo un post-proceso adicional para tratar de ubicar los hashtags en correspondencia a las comunidades identificadas en las interacciones y que nos permitieron construir la visualización de comunidades de discurso.

A partir del cálculo de modularidad para el Grafo 2 asignamos a la tabla de aristas la comunidad correspondiente a sus nodos de origen (Source). El resultado puede explorarse en la Tabla 3 que también está disponible en versión interactiva digital.

Se deben señalar dos cosas importantes y que inciden en el análisis: estas comunidades son en principio, distintas a las del apartado anterior, pues el cálculo de modularidad se realizó sobre el Grafo 2. El segundo elemento es que debido a que un mismo nodo Target (o nodo de destino de la interacción) puede haber recibido interacciones de distintos nodos de origen (Source) algunas etiquetas duplican su presencia en distintas comunidades. Para reducir la redundancia, hemos filtrado los resultados eliminando de la visualización el hashtag con el que se realizó la búsqueda (#revocaciondemandato y formulaciones similares con mayúsculas o acentos).

El principio y las implicaciones para el análisis son, sin embargo, similares en este nuevo tratamiento de los datos, a saber, dado que hay un uso orientado para los hashtags, las interacciones alrededor de los mismos deberían formar cierto tipo de configuraciones discursivas que pueden hacerse visibles mediante el cálculo de modularidad.

Tabla 3. Mapa de árbol para los hashtags. El tamaño se corresponde con el peso de la arista a la que pertenecían en el Grafo 2 y el color a la comunidad.

La premisa parece cumplirse. Para la comunidad celeste (1, superior izquierda) y que acumula el mayor grado de peso de las aristas, se forma una comunidad en torno a los hashtags informativos utilizados por las cuentas oficiales del INE nacional y de los estados. Esta comunidad se corresponde con la función social de difusión de información que ciertos usuarios (voces autorizadas) tienen en Twitter.

La segunda comunidad en importancia es la azul (inferior izquierda, 0) y en la que parece conformarse un encuadre de oposición en torno a hashtags como #SiVotasSeVa, #UrnasVacias, #VotasYSeVa, #CasaGris, #10DeAbrilLopezSeVa, #ElImbecilDePalacio, entre otros. Algo en lo que nos permite detallar esta visualización es que la oposición no es exclusivamente al ejercicio de revocación de mandato sino, más bien, hacia la figura en el poder o el proyecto de gobierno que se somete al mismo.

La tercera comunidad (superior derecha, 6) muestra una diversidad de posiciones discursivas: algunos elementos tienen corte informativo (#AIFA, #CDMX, #Nacional, #Entérate) y otras de corte político (#AMLO, #MORENA, #RevocacionDeMandatoVa, #SiPorMexico). En esta comunidad el uso de los HTs parece producir una conjunción entre propuestas informativas y discusiones del ejercicio de revocación de mandato, preferentemente de índole positiva.

Finalmente, una cuarta comunidad (roja, central, 10) manifiesta la propuesta de encuadre preferentemente positivo en torno a la revocación de mandato y el proyecto político de la 4T (#QueSigaAMLO, #QueSigaLaDemocracia, #AMLOSeQueda, #AMLONoEstasSolo, etc.) que, en términos del conjunto de datos, logra cierto grado de densidad y mayor uniformidad que otras comunidades discursivas.

Difusión informativa, discusión y participación hacia la #RevocaciónDeMandato

Partiendo de la pregunta ¿Qué se discute en Twitter sobre la revocación de mandato? se descargaron casi 10 mil tuits con el hashtag #revocaciondemandato (sic) de la plataforma de red social Twitter. Los datos resultantes se procesaron para mapear interacciones y detectar comunidades de discusión.

A partir de la identificación de comunidades, se asignó a los mensajes y los hashtags, espacios discursivos de pertenencia tratando de identificar encuadres simbólicos en torno al ejercicio de revocación de mandato, considerando factores como el alcance logrado por cierto tipos de usuarios y la correspondencia simbólica que se da en el uso de ciertas etiquetas en el marco de interacciones entre grupos de usuarios.

Como resultado de la descarga, se encuentra primero que nada que la discusión no es aún demasiado densa en torno al tema. El hashtag temático #revocacióndemandato aparece utilizado por múltiples usuarios, pero su densidad todavía es menor a otros temas del momento en el marco de la vida política nacional. Esto no es menor, pues el ejercicio se acerca y el 10 de abril la ciudadanía acudirá a las urnas para tomar una decisión a este respecto.

El mapeo de interacciones nos permitió identificar a qué tipo de usuarios se dirigen o se amplifican sus comentarios sobre la revocación de mandato: las autoridades electorales aparecen como centrales en su papel de difusión de información del ejercicio, personajes políticos del oficialismo (o la 4T) están presentes en la discusión tomando posición respecto al mismo, y la presencia de los medios de comunicación (con usuarios periodistas) aparece como prominente como parte de la cobertura al tema. Como en otros casos, la figura del presidente no deja de ser central, cabe señalar.

El uso de los hashtags parece seguir la lógica estratégica que otros estudios han reseñado, y termina asociado en tres sentidos: como elemento de información cuando proviene de autoridades electorales, como espacio para la crítica entre quienes rechazan el ejercicio electoral, y como punto de partida para reafirmar el apoyo al gobierno en turno entre quienes impulsan la revocación de mandato.

Estos elementos nos permitieron construir la noción de comunidades discursivas, retomando a la vez la propuesta de Sued y Cebral (2020) sobre “voces autorizadas” en tanto que usuarios que, al cumplir una función social en las plataformas, proponen también un encuadre simbólico para ciertos temas. Así, encontramos que voces autorizadas logran mayor alcance de sus mensajes y reúnen en torno a sí interacciones y discusiones que se corresponden o divergen de la propuesta discursiva planteada. En general, los temas se dividen, de nuevo, en tres: el manejo informativo de la revocación de mandato, la crítica (algunas veces severa) al mismo, y el respaldo al gobierno en turno y a la convocatoria a las urnas.

Al llevar la noción de comunidad discursiva al uso de hashtags, encontramos que las interacciones alrededor de los mismos reproducen esta lógica de construcción de encuadre, lo que refuerza nuestras aproximaciones previas.

Con ello, lo que parece surgir es el hecho de que si bien, el ejercicio de revocación de mandato no parece haber logrado densidad (en términos de producción de mensajes) en Twitter que otros temas han logrado, abre distintos espacios para la discusión (para informar, apoyar o criticar) sobre la próxima consulta. Esta falta de tracción que ha experimentado el tema en espacios sociodigitales podría deberse al hecho de que, debido a que siguiendo la ley en la materia, el INE ha instruido a las representantes de gobierno a no pronunciarse sobre el proceso. Esto podría cambiar en los próximos días luego de que la bancada de MORENA en el Poder Legislativo aprobara el pasado 17 de marzo un decreto que interpreta parte de la ley en la materia e interpreta el concepto de propaganda gubernamental (prohibido durante el proceso) estableciendo que “no constituyen propaganda gubernamental las expresiones de las personas servidoras públicas, las cuales se encuentran sujetas a los límites establecidos en las leyes aplicables”. Esto permitiría, en lo que aquí se ha discutido, que estas “voces autorizadas” en el escenario sociodigital participen activamente, proponiendo un marco de interpretación del proceso y generando ya sea adhesión a sus pronunciamientos o mayor discusión en torno a los mismos.

No se omite el hecho de que debido a la forma en que realizamos la consulta a la API de Twitter, la extracción deja de lado mensajes que aborden el tema sin utilizar el hashtag. Por ello, estas reflexiones se enmarcan en el uso estratégico de las etiquetas en plataformas de redes sociales (la utilización del HT como parte de una propuesta discursiva, ya sea para tomar posición o interpretar un evento). De ello se deriva que, para conocer a mayor profundidad el tema, se requieren estrategias que amplíen el espacio de observación hacia mensajes no etiquetados mediante esta práctica.

Notas

  1. La versión 1 de la API de Twitter permite acceder a una ventana de datos de los últimos 7–10 días. Cada llamado a la API permite una descarga de unos 17,000 tuits. El espacio entre llamados a la API es de 15 minutos.

R E F E R E N C I A S

Barredo Ibáñez, D., Rivera, J., & Amézquitan, A. (2015, junio). La influencia de las redes sociales en la intención de voto. Una encuesta a partir de las elecciones municipales en Ecuador 2014. Quórum Académico, 12(1), 136–154.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. International AAAI Conference on Weblogs and Social Media.

Biswas, A., Ingle, N., & Roy, M. (2014, junio). Influence of Social Media on Voting Behavior. Journal of Power, Politics & Governance, 2(2), 127–155.

Blevins, J. L., Lee, J. J., McCabe, E. E., & Edgerton, E. (2019). Tweeting for social justice in #Ferguson: Affective discourse in Twitter hashtags. New Media & Society, 21(7), 1636–1653. https://doi.org/10.1177/1461444819827030

Kearney, M. W. (2020). Package ’rtweet’ — Collecting Twitter Data (0.7.0) [R]. https://cran.r-project.org/package=rtweet

R Core Team. (2021). R: A Language and Environment for Statistical Computing [R]. R Foundation for Statistical Computing. https://www.R-project.org/

Sobaci, M. Z., Eryiğit, K. Y., & Hatipoğlu, İ. (2016). The Net Effect of Social Media on Election Results: The Case of Twitter in 2014 Turkish Local Elections. En M. Z. Sobaci (Ed.), Social Media and Local Governments (Vol. 15, pp. 265–279). Springer International Publishing. https://doi.org/10.1007/978-3-319-17722-9_14

Sued Palmeiro, G. E., & Cebral Loureda, M. (2020). Voces autorizadas en Twitter durante la pandemia de COVID-19: Actores, léxico y sentimientos como marco interpretativo para usuarios ordinarios. Revista de Comunicación y Salud, 10(2), 549–568.

Tableau Software. (2021). Tableau Desktop Public Edition (2021.4.3) [MacOs]. SalesForce Company. https://public.tableau.com/en-us/s/

Xu, S., & Zhou, A. (2020). Hashtag homophily in twitter network: Examining a controversial cause-related marketing campaign. Computers in Human Behavior, 102, 87–96. https://doi.org/10.1016/j.chb.2019.08.006

Explorando datos de servicios de streaming: Netflix Dataset

Explorando datos de servicios de streaming: Netflix Dataset

Esta entrada está disponible en RPubs. Publicada originalmente en Medium.

Esta publicación reproduce un ejercicio realizado como parte del taller “R para Ciencias Sociales” impartido por Brenda Vázquez. A lo largo de este ejercicio se otorgan los enlaces para acceder a las bases de datos y se reproduce el código utilizado para el ejercicio.

El objetivo de este ejercicio es estimar qué tan asociado está el puntaje que obtienen películas de habla inglesa con el número de premios que reciben. La premisa es que aquellas cintas que reciben una mejor recepción de la crítica y la audiencia tienden a obtener un mayor reconocimiento institucional. Usaremos como variable independiente o explicativa el puntaje que obtienen películas de habla inglesa en el sitio Metacritic y como variable dependiente el número de premios recibidos.

Metacritic es un sitio en el que usuarios y sitios especializados valoran distintos tipos de productos culturales (desde películas y series hasta videojuegos y música).

Datos y técnicas

Los datos que utilizaremos para poner a prueba esta premisa fueron construidos por un estudiante originario de India, Syed Mubarak quien publicó en Kaggle una base de datos que contiene 9425 registros de películas y series disponibles en la plataforma Netflix. La base fue publicada en agosto de 2021 por lo que es una de las más recientes. Puede consultarse en el sitio de Kaggle.

El conjunto de datos ofrece 29 variables entre las que se encuentra el título, género, idiomas, duración, entre otros. Para la variable explicativa utilizaremos el puntaje obtenido en Metacritic (“Metacritic Score”) y para la dependiente el número de premios obtenidos (“Awards Received”) que forman parte de la base. Estas variables serán sometidas a un modelo de regresión linear para estimar el efecto que el puntaje tiene en el número de premios. Esperamos que aquellas películas más valoradas por los usuarios sean las que obtengan mayor reconocimiento.

Después de explorar los datos, notamos que existen títulos que no cuentan con datos. Para refinar el proceso, decidimos eliminar los datos perdidos así como aquellos que tuvieran menos de un premio. Como paso adicional, decidimos filtrar los registros para quedarnos únicamente con películas cuyo idioma fuera Inglés. Para llevar a cabo esto realizamos un subconjunto de datos a partir de la base original.

metapremios <-subset(datos, datos$`Series or Movie`==”Movie” & datos$Languages==”English”
& datos$`Awards Received`>1 & !is.na(datos$`Awards Received`) & !is.na(datos$`Metacritic Score`))

Del total de registros en el conjunto original, redujimos el número de observaciones a 988 películas en habla inglesa con al menos dos premios obtenidos.

Resultados

El siguiente paso fue explorar los descriptivos de cada variable.

summary(metapremios$`Metacritic Score`)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.0 52.0 66.0 62.9 75.0 99.0
summary(metapremios$`Awards Received`)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.0 3.0 5.0 12.7 13.0 242.0

Así, encontramos que la media de puntaje en Metacritic para el conjunto de películas es de 62.9 y la media de premios es de 13 galardones. Mediante las siguientes líneas de código, graficamos los resultados y trazamos las líneas donde se cruzan las medias de cada una de las variables.

plot(metapremios$`Metacritic Score`, metapremios$`Awards Received`,
main=”Películas y premios obtenidos”,
xlab=”Puntaje alcanzado en Metacritic”,
ylab=”Premios obtenidos”,
xaxp=c(0,100,10), yaxp=c(0,250,5))
abline(v=media.metacritic, col=”red”)
abline(h=media.premios, col=”red”)
points(media.metacritic, media.premios, pch=21, cex=5, col=”red”)
points(media.metacritic, media.premios, pch=19, cex=2, col=”red”)
Gráfica de dispersión para películas por puntaje alcanzado en Metacritic y número de premios obtenidos.

Lo primero que cabe notar es que, aparentemente, películas con mayor puntaje en Metacritic obtienen un mayor número de premios, sin embargo, aún hay un alto número de películas que obtienen pocos premios pese a su alto puntaje. Cabe esperar que la correlación entre estas dos variables, si bien existe, no sea tan fuerte como esperábamos al principio. Para explorar esto, realizaremos una correlación simple entre ambas.

cor(metapremios$`Metacritic Score`, metapremios$`Awards Received`,
use = “pairwise.complete.obs”)
#[1] 0.3916265

Obtenemos un valor de 0.39 que nos indica una asociación no muy fuerte pero positiva entre el puntaje de la crítica y los premios recibidos. Hemos decidido realizar una exploración gráfica para ver cómo se distribuye la asociación. Para ello, utilizaremos ‘ggscatter’ que requiere instalar y cargar los paquetes ‘ggplot2’, ‘ggsci’ y ‘ggpubr’.

library(ggplot2)
library(ggsci)
library(ggpubr)
ggscatter(metapremios, x = “Metacritic Score”, y = “Awards Received”,
add = “reg.line”, conf.int = TRUE,
cor.coef = TRUE, cor.method = “pearson”,
xlab = “Puntaje en Metacritic”, ylab = “Premios Obtenidos”)
Gráfico de dispersión de la correlación entre Puntaje en Metacritic y Premios Obtenidos para películas en habla inglesa disponibles en Netflix.

Ahora podemos ver no solo el valor de la correlación (R=0.39) sino también su pendiente. Ahora que tenemos certeza de que las variables están asociadas, que su correlación es positiva y que ésta es estadísticamente significativa, procederemos a poner a prueba nuestra premisa calculando un modelo de regresión. Para obtener una versión más estilizada de los resultados del modelo, hemos cargado el paquete ‘jtools’ que nos da la opción summ(modelo) como la veremos a continuación. (La opción con R Base es llamar el resultado con ‘summary(model)’.

meta.model <- lm(metapremios$`Awards Received`~metapremios$`Metacritic Score`)
summ(meta.model)
Resultados de un modelo de regresión que calcula el efecto del puntaje en Metacritic sobre el número de premios recibidos para películas en inglés disponibles en la plataforma Netflix.

La opción ‘summ(modelo)’ nos ofrece una vista más resumida de los resultados de la regresión. En primer lugar, vemos que el coeficiente del puntaje en Metacritic tiene un efecto positivo que es estadísticamente significativo sobre el número de premios que una película obtiene. El modelo cuenta con una R2 ajustada de 0.15, por lo que, si bien no es el modelo con el mejor ajuste, nos permite explicar el 15% de la varianza de los datos con los que contamos. Cabe señalar que en las exploraciones previas, ninguna otra medida de la crítica (Hiddem Gems Score, Rotten Tomatoes, IMdB Score) obtenían una correlación tan alta como el puntaje en Metacritic.

Como paso adicional, hemos decidido hacer una exploración gráfica de nuestra línea de regresión con ‘jtools’. Aunque la gráfica de correlación ya nos ofrece la visualización, hemos decidido ofrecer esta visualización adicional.

library(jtools)
premios <- metapremios$`Awards Received`
puntaje <- metapremios$`Metacritic Score`
fit <- lm(premios~puntaje)
summ(fit)
effect_plot(fit, pred = “puntaje”, interval = TRUE, plot.points = FALSE, rug=TRUE,
partial.residuals = TRUE,
point.size=0.5,
main.title = “Modelo de regresión para películas en inglés”,
x.label = “Puntos obtenidos en Metacritic”,
y.label = “Número de premios alcanzados”,
colors = “blue2”,
point.color= “red”)
Gráfico de dispersión del modelo de regresión para películas en inglés disponibles en la plataforma Netflix. El puntaje obtenido en Metacritic tiene un efecto en el número de premios alcanzados.

Discusión

Resulta difícil estimar qué película recibirá una mayor cantidad de premios únicamente tomando en cuenta la percepción que la crítica ofrece. Metacritic es un espacio para que usuarios valoren aquellos filmes que más les complacieron, la plataforma permite no solo colocar un número a las cintas sino también ofrecer una reseña. En este sentido, como plataforma social, sintetiza parte del sentimiento que las audiencias tienen en torno a una producción cinematográfica en particular y a la industria del cine en general.

En ese sentido, el puntaje en Metacritic nos ha servido como una variable de aproximación (proxy) a un elemento que puede tener impacto en el éxito final, medido en número de premios, que tiene una película.

El modelo de regresión, con su R2=0.15 nos lleva en la línea correcta al poner a prueba el efecto de una variable que podría explicar, en parte, el éxito de una producción cinematográfica. En este caso, hemos limitado el cálculo a cintas en habla inglesa que se encuentran en una plataforma, Netflix, por lo que no sabemos nada de aquellas cintas fuera de la plataforma, pero creemos que esta muestra nos da pistas del fenómeno.

Otra caución a tomar en cuenta es que un modelo de regresión linear puede no ser tan indicado para evaluar el efecto que la crítica tiene en las películas. Es posible que, si exploramos la asociación entre estas dos variables tomando en cuenta el género del filme, obtengamos resultados más robustos para cierto tipo de filmes (drama, comedia, acción, etc.), por lo que necesitamos seguir explorando los datos integrando variables de otro tipo (categóricas) con un modelo ajustado a las mismas.

Conclusiones

Este ejercicio ha buscado poner a prueba la idea de que el peso de la crítica tiene cierto efecto en el reconocimiento que un filme logra. Así, hemos visto que la calificación que las audiencias ofrecen a una película está asociado positivamente con el número de premios que ésta recibe.

Al calcular un modelo de regresión, hemos podido estimar el efecto que buenas calificaciones llegan a tener en producciones cinematográficas. Hemos usado una base disponible y que cuenta con cintas disponibles en una plataforma de VOD. De contar con un mayor número de datos, es posible que podamos confirmar esta premisa y, si estimamos modelos que puedan integrar variables categóricas, también es posible que podamos discernir el efecto entre distintos tipos de películas.

De momento, hemos logrado explorar la posibilidad de bases de datos de este tipo en el ánimo de utilizar herramientas de estadística y visualización de datos para estimar analíticas culturales, un área en la que creemos que es necesario diseñar aproximaciones sistemáticas que nos permitan construir una mejor comprensión de los fenómenos culturales contemporáneos.